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Abstract

The openly available biomedical literature
contains over 5 billion words in publica-
tion abstracts and full texts. Recent ad-
vances in unsupervised language process-
ing methods have made it possible to make
use of such large unannotated corpora for
building statistical language models and
inducing high quality vector space repre-
sentations, which are, in turn, of utility
in many tasks such as text classification,
named entity recognition and query ex-
pansion. In this study, we introduce the
first set of such language resources cre-
ated from analysis of the entire available
biomedical literature, including a dataset
of all 1- to 5-grams and their probabilities
in these texts and new models of word se-
mantics. We discuss the opportunities cre-
ated by these resources and demonstrate
their application. All resources introduced
in this study are available under open li-
censes at http://bio.nlplab.org.

1 Introduction

Despite efforts to create annotated resources for
various biomedical natural language processing
(NLP) tasks, the number of unannotated domain
documents dwarfs that of annotated documents
by many orders of magnitude. The PubMed lit-
erature database provides access to over 23 mil-
lion citations, of which nearly 14 million include
an abstract. The biomedical sciences are also
at the forefront of the shift toward open-access
(OA) publication (Laakso and Björk, 2012), with
the PubMed Central (PMC) OA subset containing
nearly 700,000 full-text articles in an XML for-

mat.1 Together, these two resources constitute an
unannotated corpus of 5.5 billion tokens, effec-
tively covering the entire available biomedical sci-
entific literature and forming a representative cor-
pus of the domain (Verspoor et al., 2009).

The many opportunities created by the avail-
ability of large unannotated corpora for various
NLP methods are well established (see e.g. Rati-
nov and Roth (2009)), and models induced from
unannotated texts have been considered also in a
number of recent biomedical NLP studies (Stene-
torp et al., 2012; Henriksson et al., 2012). A par-
ticular focus of recent research interest are models
of meaning induced from unannotated text, with
numerous methods introduced for capturing both
the semantics of words as well as those of phrases
or whole sentences (Mnih and Hinton, 2008; Col-
lobert and Weston, 2008; Turian et al., 2010;
Huang et al., 2012; Socher et al., 2012). Although
such approaches generally produce better models
with more data, their computational complexity
has largely limited their application to corpus sizes
far below that of the biomedical literature. Re-
cently, a number of efforts have introduced new
language resources derived from very large cor-
pora and demonstrated approaches that allow word
representations to be induced from corpora of bil-
lions of words (Lin et al., 2010; Mikolov et al.,
2013). However, despite the relevance of such ap-
proaches to biomedical language processing, there
have to the best of our knowledge been no attempts
to apply them specifically to the biomedical litera-
ture.

Corpora containing billions of words can repre-
sent challenges even for fully automatic process-
ing, and most domain efforts consequently focus

1In this study, we do not consider PDF supplementary ma-
terials (see e.g. Yepes and Verspoor (2013)).



Subset
PubMed PMC OA Total

Documents 22,120,269 672,589 22,792,858
Sentences 124,615,674 105,194,341 229,810,015
Tokens 2,896,348,481 2,591,137,744 5,487,486,225

Table 1: PubMed and the PMC OA statistics, representing the entire openly available biomedical litera-
ture. Note that PubMed statistics omit documents found also in PMC OA, and that only approximately
14 million of PubMed documents include an abstract.

n #
1 24,181,640
2 230,948,599
3 1,033,760,199
4 2,313,675,095
5 3,375,741,685

Table 2: Counts of unique n-grams.

only on small subsets of the literature at a time. To
avoid duplication of efforts, it is therefore desir-
able to build and distribute standard datasets that
can be utilized by the community. In this work,
we introduce and evaluate new language resources
derived from the entire openly available biomedi-
cal scientific literature, releasing these resources to
the community under open licenses to encourage
further exploration and applications of literature-
scale resources for biomedical text processing.

2 Materials and methods

2.1 Text sources

Article titles and abstracts were drawn from the
PubMed distribution as of the end of Septem-
ber 2013, constituting in total 22,723,471 records.
Full-text articles were, in turn, sourced from the
PubMed Central Open Access (PMC OA) section,
again as of the end of September 2013, and con-
stitute 672,589 articles. PubMed abstracts for ar-
ticles that are also present in PMC OA were dis-
carded, so as to avoid the duplication of the ab-
stract, which is also part of the PMC full text.

2.2 Text preprocessing

We first extracted document titles and abstracts
from the PubMed XML and extracted all text con-
tent of the PMC OA articles using the full-text arti-
cle extraction pipeline2 introduced for the BioNLP
Shared Task 2011 (Stenetorp et al., 2011). Since

2https://github.com/spyysalo/nxml2txt
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Table 3: A random sample of 10 tokens appearing
exactly once in the openly available literature.

the pipeline extracts all text content, also includ-
ing sections not desired for the current resource
such as author affiliations and lists of references,
we used a custom script to post-process the out-
put and preserve only text from the title, abstract,
and main body of the articles. We further removed
inline formulae. Both for the abstracts and the
full-text articles, Unicode characters were mapped
to ASCII using the replacement table also used
in the BioNLP Shared Task pipeline. This step
is motivated by the number of commonly used
NLP tools which do not handle Unicode-encoded
text correctly, as well as the normalization gained
from mapping, for example, the character β to the
ASCII string beta — both of which are common
in the input text. The extracted text was then seg-
mented into sentences using the GENIA sentence
splitter3 and tokenized using a custom tokeniza-
tion script replicating the tokenizer used in the GE-
NIA Tagger (Tsuruoka et al., 2005). The resulting
corpus consists in total of 5.5B tokens in 230M
sentences. Detailed statistics are shown in Table 1.

2.3 N-grams

All 1- to 5-grams from the data were collected us-
ing the KenLM Language Model Toolkit (Heafield
et al., 2013) and a custom tool4 based on HAT-tries
(Askitis and Sinha, 2007). The counts of unique

3https://github.com/ninjin/geniass
4https://github.com/spyysalo/ngramcount



Word2vec Random Indexing
Input: cysteine Input: methylation Input: cysteine Input: methylation

Word Distance Word Distance Word Distance Word Distance
cystein 0.865653 hypermethylation 0.815192 lysine 0.975116 hypermethylation 0.968435
serine 0.804936 hypomethylation 0.810420 proline 0.968552 acetylation 0.967535
Cys 0.798540 demethylation 0.780071 threonine 0.963178 fragmentation 0.961802
histidine 0.782239 methylated 0.749713 arginine 0.963163 plasticity 0.960208
proline 0.771344 Methylation 0.749538 histidine 0.962816 hypomethylation 0.959995
Cysteine 0.769645 methylations 0.745969 glycine 0.960027 replication 0.959925
aspartic 0.750118 acetylation 0.740044 tryptophan 0.959929 deletions 0.956500
active-site 0.745223 DNA-methylation 0.739505 methionine 0.959649 disturbance 0.955987
asparagine 0.735614 island1 0.738123 serine 0.958578 pathology 0.954187
cysteines 0.725626 hyper-methylation 0.730208 Cys 0.953123 asymmetry 0.953079

Table 4: Nearest words for selected inputs in the two models.

n-grams are shown in Table 2. Of the 24M unique
tokens, a full 14M are singleton occurrences. To
illustrate the long tail, ten randomly selected sin-
gleton tokens are shown in Table 3.

Having precomputed all n-grams enables an
efficient way of building word vectors, utiliz-
ing the fact that the list of n-grams includes all
unique windows focused on each word in the
corpus together with their count (or, correspond-
ingly, probability). This makes the n-gram model
a compressed representation of the corpus with
all salient information needed to build a distribu-
tional similarity model. As opposed to the stan-
dard technique of sliding a window across the cor-
pus, one can instead aggregate the information di-
rectly from the n-grams.

2.4 Word vectors from n-grams with
Random Indexing

Random indexing (Kanerva et al., 2000) is a
method for building a semantic word vector model
in an incremental fashion. First, every word is as-
signed an index vector with all elements equal to
zero, except for a small number of randomly dis-
tributed +1 and -1 values. The vector space repre-
sentation of a given word is then obtained by sum-
ming up the index vectors of all words in all its
context windows in the corpus.

We used an existing implementation of ran-
dom indexing5 that we modified to consider each
3-gram as the left half window of the rightmost
word, as well as the right half window of the left-
most word. The index vectors are weighted by
their corresponding probability. For the training
we used vector dimensionality of 400, 4 non-zeros
in the index vectors, and shifted index vectors in
the same way as was done for direction vectors by
Sahlgren et al. (2008). We also weighted the index

5http://www.nada.kth.se/˜xmartin/java/

vectors by their distance to the target word accord-
ing to the following equation: weighti = 21−distit

where distit is the distance to the target term. The
run took approximately 7.7 hours on a 16-core sys-
tem and the compressed model occupies 3.6GB on
disk. See Table 4 for an illustration of the similar-
ities captured by the word vectors.

2.5 word2vec word vectors
We also applied the word2vec6 implementation
of the method proposed by Mikolov et al. (2013)
to compute additional vector representations and
to induce word clusters. The algorithm is based
on neural networks and has been shown to out-
perform more traditional techniques both in terms
of the quality of the resulting representations as
well as in terms of computational efficiency. A
primary strength of the class of models introduced
by Mikolov et al. in comparison to conventional
neural network models is that they use a single
linear projection layer, thus omitting a number
of costly calculations commonly associated with
neural networks and making application to much
larger data sets than previously proposed methods
feasible. We specifically induce 200-dimensional
vectors applying the skip-gram model with a win-
dow size of 5. The model works by predicting the
context words within the window focused on each
word (see Mikolov et al. for details). Once the
vector representation of each word is computed,
the words are further clustered with the k-means
clustering algorithm with k = 1000.

We applied word2vec to create three sets of
word vectors: one from all PubMed texts, one
from all PMC OA texts, and one from the com-
bination of all PubMed and PMC OA texts. For
the PubMed and PMC OA subsets, the processing
required approx. 12 hours on a 12-core system and

6https://code.google.com/p/word2vec/



Corpus
Method AnEM BC2GM NCBID
NERsuite 69.31 / 50.16 / 58.20 74.39 / 75.21 / 74.80 84.41 / 81.69 / 83.02
+ Word clusters 66.43 / 53.11 / 59.03 78.14 / 73.96 / 75.99 86.91 / 80.12 / 83.38
Stenetorp et al. 72.90 / 55.89 / 63.27 74.71 / 66.78 / 70.52 83.86 / 77.84 / 80.73

Table 5: Effect of features derived from word2vec word clusters on entity mention tagging
(precision/recall/F-score). The best results achieved in a previous evaluation using multiple word repre-
sentations (Stenetorp et al., 2012) are given for reference.

consumed at peak approx. 4.5GB of memory. The
combination of the two took 24 hours and 7.5GB
of memory. The resulting vector representations
for the three sets are 2-3GB in size. Table 4 shows
the nearest words (cosine distance) to selected in-
put words.

3 Extrinsic evaluation

To assess the quality of the word vectors and the
clusters created from these vectors, we performed
a set of entity mention tagging experiments using
three biomedical domain corpora representing var-
ious tagging tasks: the BioCreative II Gene Men-
tion task corpus (Smith et al., 2008) (gene and
protein names), the Anatomical Entity Mention
(AnEM) corpus (Ohta et al., 2012) (anatomical
entity mentions) and the NCBI Disease (NCBID)
corpus (Doğan and Lu, 2012) (disease names). We
compare the results with those of Stenetorp et al.
(2012), who previously applied these three cor-
pora in a similar setting to evaluate multiple word
representations induced from smaller corpora.

To perform the evaluation, we applied
AnatomyTagger (Pyysalo and Ananiadou, 2013),
an entity mention tagger using the NERsuite7

toolkit built on the CRFsuite (Okazaki, 2007) im-
plementation of Conditional Random Fields. For
each corpus, we trained one model with default
features, and another that augmented the feature
set with the cluster ID of each word. We selected
hyperparameters (c2 and label bias) separately for
each corpus and feature set using a grid search
with evaluation on the corpus development set.
We then trained a final model on the combination
of training and development sets, and evaluated
it on the test set. We measure performance using
exact matching, requiring both tagged mention
types and their spans to be precisely correct.8

7http://nersuite.nlplab.org
8Note that this criterion is stricter than used in some pre-

vious studies on these corpora.

Table 5 shows the extrinsic evaluation results.
We find that the word representations are bene-
ficial for tagging performance for all three cor-
pora, improving the performance of a state-of-the-
art tagger and surpassing the previously reported
results in two out of three cases.

4 Conclusion

We have introduced several resources of general
interest to the BioNLP community. First, we as-
sembled a pipeline which fully automatically pro-
duces a reference conversion from the complex
PubMed and PubMed Central document XML for-
mats into ASCII text suitable for standard text pro-
cessing tools. Second, we induced 1- to 5-gram
models from the entire corpus of over 5 billion
tokens. Third, we induced vector space repre-
sentations using the word2vec and random index-
ing methods, producing the first word representa-
tions induced from the entire available biomedi-
cal literature. These can serve as drop-in solu-
tions for BioNLP studies that can benefit from pre-
computed vector space representations and lan-
guage models.

In addition to building the resources and mak-
ing them available, we also illustrated the use of
these resources for various named entity recog-
nition tasks. Finally, we have demonstrated the
potential of calculating semantic vectors from an
existing n-gram based language model using ran-
dom indexing. All tools and resources introduced
in this study are available under open licenses at
http://bio.nlplab.org.
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